

ENGINEERING GRAPHICS (BITS F110)

BITS Pilani

K K Birla Goa Campus

BITS F110 | ENGINEERING GRAPHICS

CHAPTER- 9 PROJECTIONS OF STRAIGHT LINES

Learning Objectives

\square Learn the description of quadrant on a plane paper
\square Learn the projection of point
\square Learn the projection of straight lines in a 3-D space
\square Learn the projection of intersection of planes and straight lines

Object in Four Quadrant

-Above HP and in-front of VP, if it is in l-quadrant.
-Above HP and behind VP, if it is in II-quadrant.
-Below HP and behind VP, if it is in III-quadrant.
-Below HP and in front of VP, if it is in IV-quadrant.

Projection of Point in I, II, III and IV Quadrant

Case-1: Point A is in I Quadrant

Point ' A ' is located 75 mm above HP and 125 mm in front of VP. It's TV (a) appears on HP and FV (a') appears on VP. Orthographic view shows FV above $x-y$ line and TV below x-y line after the rotation of HP through 90°.

Case-2: Point B is in II Quadrant

Point ' B ' is located 50 mm above HP and 150 mm behind VP. It's TV (b) appears on HP and FV (b') appears on VP. Orthographic view shows FV as well as TV are above $x-y$ line after the rotation of HP through 90°.

Case-3: Point C is in III Quadrant

Point ' C ' is located 100 mm below HP and 100 mm behind VP. It's TV (c) appears on HP and FV (c') appears on VP. Orthographic view shows TV above $x-y$ line and FV below $x-y$ line after the rotation of HP through 90°.

Case-4: Point D is in IV Quadrant

Point ' D ' is located 125 mm below HP and 75 mm in front of VP. It's TV (d) appears on HP and FV (d') appears on VP. Orthographic view shows FV as well as TV are below x-y line after the rotation of HP through 90°.

Comparison of I and III Quadrant

$2-D$ description of I-QUADRANT	$2-D$ description of III-QUADRANT
' '	' ' ' ' ' ' ' ' ' ' ' ' ' ' 1 ' ' ' ' ' ' ' ' '
F'人, '. ', ':	
A': ': '. ' ' ' ' ' ' '	
- \times 伊, , , , , , , 1	$\times \times \mathrm{HP}, 1,1$
,	
, TV., . . . , X,	- F.V.
.	
Above HP and In front of VP	Below HP and behind VP

Comparison of II and IV Quadrant

2-D description of II-QUADRANT	2-D description of IV-QUADRANT
Above HP and behind VP	Below HP and In front of VP

Various Positions of Straight Lines wrt Principal Planes

Various Positions of Straight Lines wrt Principal Planes

Various Positions of Straight Lines wrt Principal Planes

Notations for Straight Line Problems

TL True length
AL Apparent length
TI True inclination
AI Apparent inclination

Lengths	TL	AL				
TV	$A B$	$a b$				
FV	$A^{\prime} B^{\prime}$	$a^{\prime} b^{\prime}$	\quad	Angles	TI	AI
:---	:---	:---				
HP	θ	α				
VP	ϕ	β				

Inclined Line

(Line inclined to one plane and parallel to other plane)

Line $A B 200 \mathrm{~mm}$ long has its end $A 75 \mathrm{~mm}$ above HP and 50 mm in front of VP. End point B is in I quadrant. The line is parallel to VP and makes an inclination of 30° to HP . Draw projections of the straight line $A B$.

Inclined Line

(Line inclined to one plane and parallel to other plane)

Line $A B 200 \mathrm{~mm}$ long has its end $A 75 \mathrm{~mm}$ above HP and 50 mm in front of VP. End point B is in I quadrant. The line is parallel to HP and makes an inclination of 40° to VP. Draw projections of the straight line $A B$.

Skew Line: (Line inclined to both HP and VP) TYPE-A

True lengths and true inclinations are given. Find out apparent length and apparent inclinations

Skew Line: (Line inclined to both HP and VP)

True lengths and true inclinations are given. Find out apparent length and apparent inclinations

Skew Line: (Line inclined to both HP and VP)

True lengths and true inclinations are given. Find out apparent length and apparent inclinations. Stage-I and Stage-II are combined.

TYPE-A

IMPORTANT OBSERVATIONS

\square The projections (apparent lengths: $a b$ and $a ' b$ ') have got common end projectors a '-a and $b^{\prime}-b$.
\square The apparent angles are greater than the true angles. i.e. $\alpha>\theta$ and $\beta>\phi$.
\square The path to obtain TV of B i.e. b is $\left\{\boldsymbol{B}^{\prime}-[\right.$ Projection up to a locus line passing through a] $-\boldsymbol{b}_{1}-$ [Rotation $\left.]-b\right\}$
\square The path to obtain FV of B i.e. b^{\prime} is $\{\boldsymbol{B}-[$ Projection up to a locus line passing through $\left.a^{\prime}\right]-\boldsymbol{b}^{\prime}{ }_{1}-[$ Rotation $\left.]-\boldsymbol{b}^{\boldsymbol{\prime}}\right\}$

Apparent lengths and apparent inclinations are given. Find out true length and true inclinations.
\square Follow a reverse order of solution given for Type- A.
In this type, we are known b and b^{\prime} and we are required to find B and B^{\prime}.
\square The path to obtain B^{\prime} is
$\left\{\boldsymbol{b}-[\right.$ Rotation $]-\boldsymbol{b}_{1}-[$ Projection up to a locus line passing through $\left.b]-\boldsymbol{B}\right\}$.
\square The path to obtain B is
$\left\{\boldsymbol{b}^{\prime}-[\right.$ Rotation $]-\boldsymbol{b}^{\prime}{ }_{1}-[$ Projection up to a locus line passing through $\left.b]-\boldsymbol{B}\right\}$.

Skew Line: (Line inclined to both HP and VP)

EXAMPLE

Line $A B 200 \mathrm{~mm}$ long has its end $A 75 \mathrm{~mm}$ above HP and 50 mm in front of VP. End point B is in I quadrant. The line makes an angle of 30° to HP and 40° to VP.
Draw the projections of the straight line $A B$ and find apparent inclinations.

First imagine the line is θ° to HP and parallel to VP

Now imagine the line is ϕ° to VP and parallel to HP

Traces of line

The point of intersection of the line with the HP is called the horizontal trace (HT) and with the VP is called the vertical trace (VT).

Traces of line

Line is inclined to HP and parallel to VP

TVA

Traces of line

Line is parallel to HP and inclined to VP

FVA

TVA

Traces of line

Line is inclined to HP and VP

Traces of line

CONCLUDING REMARKS

1. FV of HT will lie on $x-y$ line
i.e. h'
2. TV of VT will lie on $x-y$ line
i.e. v
3. All TV points lie on same line
i.e. HT, v, a, b
4. All FV points lie on same line
i.e. VT, h', a', b'

Traces of line

Example: The TV and FV of a line AB measure 150 mm and 100 mm respectively. The line is inclined 30 deg to HP. The end A is 50 mm above HP and 25 mm in front of the VP. The other end B is in first quadrant. Draw the projections and locate the traces.

Solution

Simplification of Problem
A ---- h1= 50 mm above HP
d1 = 25 mm in front of VP
A is in I quadrant
B is in I quadrant
Line is in I quadrant

FV of a line 100 mm
TV of a line $=150 \mathrm{~mm}$
Inclination of line with HP $=\boldsymbol{\theta}=30^{\circ}$

Traces of line

Traces of line

Example:

Line $A B$ has its end $A 75 \mathrm{~mm}$ above HP and 50 mm in front of VP. The other end B is 175 mm below HP and 175 mm behind of VP. the distance between end projectors is 275 mm . Draw projections of line AB. Obtain HT and VT.

Traces of line

Traces of line

Example:

Line $A B$ has its end $A 50 \mathrm{~mm}$ above HP and 125 mm in front of VP. The other end B is 175 mm above HP and 25 mm in front of VP. The line $A B$ is parallel to PP. Draw projections of line AB . Obtain HT and VT.

$A^{\prime} a^{\prime}=o a$
$B^{\prime} b^{\prime}=a b$
$A a=o a^{\prime}$
$B b=o b^{\prime}$

Traces of line

Example:

Line $A B$ has its end $A 125$ mm above HP and 50 mm in front of VP. The other end B is 25 mm above HP and 200 mm behind the VP. The line $A B$ is parallel to PP. Draw projections of line AB. Obtain HT and VT.

Additional problems on line

Line AC has its TV and FV on the single projector line with the FV 100 mm long and TV 75 mm long. Endpoint A is 25 mm behind the VP and 50 mm below the HP. Draw its projections and find the true length and true inclinations. (Consider the line in III-quadrant).

Additional problems on line

$$
\begin{aligned}
& \mathrm{TL}=125 \mathrm{~mm} \\
& \Theta=53^{\circ} \\
& \Phi=37^{\circ}
\end{aligned}
$$

Additional problems on line

Two fan motors P and Q are hung from a ceiling of a hall 12 m length $L \times 5 \mathrm{~m}$ depth $\mathrm{D} \times 8 \mathrm{~m}$ height H at a height of 4 m and 6 m , respectively from the floor. The motors are 5 m and 9 m from the left end wall, 3 m and 4 m from the front wall, respectively.
(a) Draw the projections of these fan motors with reference to their location from the end wall and front wall. (b) Determine graphically, the distance between the two motors. [Solve using the I-quadrant. Scale: 0.25 AutoCAD unit (1 grid spacing) $=1 \mathrm{~m}$].

Additional problems on line

BITS F110 | ENGINEERING GRAPHICS

Thank You!

